Skip to main content
فهرست مقالات

مدل‌سازی بار رسوب کل رودخانه‌ها با استفاده از شبکه‌های عصبی مصنوعی

نویسنده:

علمی-پژوهشی (وزارت علوم) (14 صفحه - از 13 تا 26)

برآورد بار رسوب کل رودخانه­ها از مسائل مهم و کاربردی در مدیریت و برنامه­ریزی منابع آب است. غلظت رسوب می­تواند به روش­های مستقیم و یا غیرمستقیم محاسبه شود که معمولا روش­های مستقیم پرهزینه و زمان­بر هستند. همچنین بار رسوب کل می­تواند به کمک روابط مختلف انتقال رسوب محاسبه شود، لیکن به طور معمول کاربرد این روابط نیاز به شرایط معینی داشته و به علاوه در بیشتر موارد نتایج حاصل از آن­ها با یکدیگر و با مقادیر اندازه­گیری شده متفاوت است. هدف از این پژوهش ارائه روشی بر پایه شبکه­های عصبی مصنوعی (ANN) در تخمین بار رسوب کل بود. بدین منظور از دو نوع شبکه عصبی پرسپترون چند لایه (MLP) و توابع پایه شعاعی (RBF) و 200 نمونه، استفاده شد. 75 درصد از داده­ها برای آموزش و 25 درصد برای آزمون شبکه­ها در نظر گرفته شدند. متغیرهای ورودی مدل­ها شامل سرعت متوسط جریان، شیب کف آبراهه، عمق متوسط، عرض آبراهه و قطر میانه ذرات رسوب و خروجی مدل، غلظت رسوب بود. متغیرهای ورودی مرحله به مرحله به شبکه­ها اضافه شدند و هر بار نتایج ارزیابی شد تا مناسب­ترین مدل تعیین شود. سپس نتایج حاصل از مدل­های ANN با پنج معادله معروف انتقال رسوب مقایسه شدند. شاخص‌های آماری نشان داد که دقت شبکه­های عصبی به­ویژه مدل MLP در تخمین بار رسوب کل با ضریب همبستگی 96/0 بیش از سایر مدل­هاست. همچنین مشخص شد که برای افزایش دقت مدل نیاز به آموزش آن با هر دو نوع داده­های هیدرولوژیک و رسوب است. رابطه Ackersو White در برآورد مقدار بار رسوب کل بسیار بیش­برآورد و سایر روابط، کم برآورد بودند. نتایج این پژوهش نشان داد که مدل­های ارائه شده بر پایه شبکه­های عصبی با مقادیر رسوب کل مشاهده شده هم­خوانی بیشتری دارند و بویژه شبکه MLP می­تواند مقدار رسوب را در نقاط پیک به خوبی برآورد نماید.


برای مشاهده محتوای مقاله لازم است وارد پایگاه شوید. در صورتی که عضو نیستید از قسمت عضویت اقدام فرمایید.