Skip to main content
فهرست مقالات

Meshless local radial point interpolation (MLRPI) to two dimensional wave equation with Neumann’s boundary conditions


علمی-پژوهشی (وزارت علوم)/ISC (18 صفحه - از 155 تا 172)


In this article, the meshless local radial point interpolation (MLRPI) methods are applied to simulate two dimensional wave equation subject to given appropriate initial and Neumann’s boundary conditions. In MLRPI method, all integrations are carried out locally over small quadrature domains of regular shapes such as square or circle. The radial point interpolation method is proposed to construct shape functions for MLRPI. A weak formulation with a Heaviside step function transforms the set of governing equations into local integral equations on local sub domains where Neumann’s boundary condition is imposed naturally. A two-step time discretization method with the help of Crank-Nicolson technique is employed to approximate the time derivatives. Convergence studies in the numerical example show that MLRPI method possesses excellent rates of convergence.

کلیدواژه ها:

Local weak formulation ،RADIAL BASIS FUNCTION ،Finite Difference ،Meshless local radial point interpolation (MLRPI) ،2-D wave equation ،Neumann’s boundary conditions

برای مشاهده محتوای مقاله لازم است وارد پایگاه شوید. در صورتی که عضو نیستید از قسمت عضویت اقدام فرمایید.